Hitting time and mixing time bounds of Stein’s factors
نویسندگان
چکیده
منابع مشابه
Mixing time bounds for overlapping cycles shuffles
Consider a deck of n cards. Let p1, p2, . . . , pn be a probability vector and consider the mixing time of the card shuffle which at each step of time picks a position according to the pi’s and move the card in that position to the top. This setup was introduced in [5], where a few special cases were studied. In particular the case pn−k = pn = 1/2, k = Θ(n), turned out to be challenging and onl...
متن کاملthe effects of time planning and task complexity on accuracy of narrative task performance
هدف اصلی این تحقیق بررسی تاثیر برنامه ریزی زمانی، هم چنین افزایش میزان پیچیدگی تکالیف در نظر گرفته شده بصورت همزمان، بر دقت و صحت و پیچیدگی عملکرد نوشتاری زبان آموزان می باشد. بدین منظور، 50 نفر از دانش آموزان دختر در رده ی سنی 16 الی 18 سال به عنوان شرکت کنندگان در این زمینه ی تحقیق در نظر گرفته شدند و به دو گروه آزمایشی و کنترل بصورت اتفاقی تقسیم شدند. اعضای گروه آزمایشی هر دو تکلیف ساده و پی...
Improved Mixing Time Bounds for the Thorp Shuffle
E. Thorp introduced the following card shuffling model. Suppose the number of cards n is even. Cut the deck into two equal piles. Drop the first card from the left pile or from the right pile according to the outcome of a fair coin flip. Then drop from the other pile. Continue this way until both piles are empty. We show that if n is a power of 2 then the mixing time of the Thorp shuffle is O(l...
متن کاملMixing time bounds for oriented kinetically constrained spin models ∗
We analyze the mixing time of a class of oriented kinetically constrained spin models (KCMs) on a d-dimensional lattice of n sites. A typical example is the North-East model, a 0-1 spin system on the two-dimensional integer lattice that evolves according to the following rule: whenever a site’s southerly and westerly nearest neighbours have spin 0, with rate one it resets its own spin by tossin...
متن کاملLearning Expected Hitting Time Distance
Most distance metric learning (DML) approaches focus on learning a Mahalanobis metric for measuring distances between examples. However, for particular feature representations, e.g., histogram features like BOW and SPM, Mahalanobis metric could not model the correlations between these features well. In this work, we define a nonMahalanobis distance for histogram features, via Expected Hitting T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2018
ISSN: 1083-589X
DOI: 10.1214/18-ecp110